

ELIZADE UNIVERSITY ILARA MOKIN, ONDO STATE

FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SECOND SEMESTER EXAMINATION, 2017/2018 ACADEMIC SESSION

COURSE TITLE: ELECTRONIC CIRCUIT II

COURSE CODE: EEE 322

EXAMINATION DATE: 1ST AUGUST 2018

COURSE LECTURER: DR K. O. TEMIKOTAN

- January 1980

HOD's Signature

TIME ALLOWED: 2 HOURS 30 MINUTES

INSTRUCTION

- 1. ANSWER ALL QUESTIONS IN SECTION A AND FOUR QUESTIONS IN SECTION B
- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.
- 3. YOU ARE NOT ALLOWED TO BORROW ANY WRITING MATERIALS DURING THE EXAMINATION.

SECTION A

ANSWER ALL QUESTIONS IN THIS SECTION

i.	When is a 4-bit sum invalid in a BCD addition?	
ii.	Convert 11011 in Gray to binary.	
iii.	Which of these is not an alphanumeric code? (ASCII, Unicode, BCD, EBC	CDIC)
iv.	A NOT gate has $V_{IL} = 0.8 \text{ V}$, $V_{IH} = 2.5 \text{ V}$, $V_{OL} = 0.4 \text{ V}$, and $V_{OH} = 3.6 \text{ V}$. If are cascaded, find the high and low margins. Low nois and high noise margin is	e margin is
V.	In a sum of product logic circuit, the output gate is an gate.	gate, while in a
vi.	The term fan-in means	
		(2 Marks)
vii.	How many flip flops are required to divide a frequency by 32?	·
viii.	A counter has n flip flops, the number of states for the flip flop will be	less or equal to
ix.	Asynchronous counters are also called counters	
х.	A is a circuit used to select and route any one signals to a single output.	of several input
xi.	The main disadvantage of MOS ICs iscomparison with TTL ICs.	in
xii.	If the output of a 2-input gate is defined by $Y = \overline{AB} + A\overline{B}$, the gate is a gate	
xiii.	What is the next number in the series 0 01 10 11 100 101?	
xiv.	Any logical circuit can be realized using either gate.	gate or
XV.	Two functions of a shift register are	and (20 Marks)

ANSWER ANY FOUR QUESTIONS

QUESTION ONE

a. The input waveforms applied to a 3-input AND gate are as indicated in Figure 1. Show the output waveform represented by X in proper relation to the inputs with a timing diagram.

Figure 1 Timing Diagram and Logic Symbol for Question 1

b. Implement $Y = AB + C\overline{D}$ using only NAND gates

(3 Marks)

c. Design a logic circuit for decimal to BCD encoder.

(5 Marks)

QUESTION TWO

a. Using Karnaugh map minimize the expression;

$$Z = \bar{A}\bar{B}\bar{C} + A\bar{C}\bar{D} + A\bar{B} + ABC\bar{D} + \bar{A}\bar{B}C$$
 (4 Marks)

b. Design the simplest circuit that has four inputs, A, B, C, and D, which produces an output value of 1 whenever three or more of the input variables have the value of 1; otherwise the output has to be 0. (6 marks)

QUESTION THREE

a. Using a diode transistor logic (DTL) design a circuit that can implement;

$$X = (\overline{A + \overline{B} + C})$$
 (4 marks)

b. Draw the Truth Table for the circuit in Figure 2 and derive an expression for F (6 marks)

Figure 2 Logic Diagram for Question 3

QUESTION FOUR

a. The min-term of a Boolean expression is given as;

$$Y = (A, B, C) = \sum_{i=1}^{n} m(1,3,5,6).$$

Implement this using a multiplexer.

(3 Marks)

- (3 Marks) b. Write out the expression for Y and implement using discrete gates.
- c. What is a demultiplexer? Given the following truth table for a DEMUX, identify the type and draw the logic circuit for the DEMUX.

Table for Question 3e

A	В	D	$\overline{A_0}$	A_1	A_2	A_3
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	0
1	1	1	0	0	0	1

QUESTION FIVE

- a. List and explain briefly five performance characteristics of an analogue to digital converter.
- b. Draw a 4-bit R/2R ladder DAC and explain its principles of operation. (4 Marks)
- c. Determine the percentage resolution of the the following digital to analogue converters.
 - An 8-bit DAC
 - ii. A 16- bit DAC

(2 Marks)

QUESTION SIX

- a. Show how a J K flip flop can be converted to a D flip flop. (2 Marks)
- b. A counter is required to count the number of bottles being automatically filled in a plant. Each time a bottle crosses an electronic sensor a pulse is generated. If 1000 bottles are to be counted, what is the minimum number of flip flops required? (2 marks)
- c. Determine the output of the DAC in Figure 3 if the input signal is 1011. D₀ is the least significant bit. Assume that binary 1 represents 5 V. (6 Marks)

Figure 3. DAC for Question 6c

(6 Marks)